Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney.

نویسندگان

  • Gustavo Frindt
  • Anish Shah
  • Johan Edvinsson
  • Lawrence G Palmer
چکیده

The activity of ROMK channels in rat kidney tubule cells was assessed as tertiapin-Q (TPNQ)-sensitive current under whole cell clamp conditions. With an external K(+) concentration of 5 mM and an internal K(+) concentration of 140 mM and the membrane potential clamped to 0 mV, TPNQ blocked outward currents in principal cells of the cortical collecting duct (CCD) outer medullary collecting duct and connecting tubule (CNT). The apparent K(i) was 5.0 nM, consistent with its interaction with ROMK. The TPNQ-sensitive current reversed at voltages close to the equilibrium potential for K(+). The currents were reduced when the pipette solution contained ATP. In the CCD, the average TPNQ-sensitive outward current (I(SK)) was 476 +/- 48 pA/cell in control animals on a 1% KCl diet. I(SK) increased to 1,255 +/- 140 pA when animals were maintained on a high-K (10% KCl) diet for 7 days and decreased to 314 +/- 46 pA after 7 days on a low-K (0.1% KCl) diet. In the CNT, I(SK) was 360 +/- 30 pA on control, 1,160 +/- 110 on high-K, and 166 +/- 16 pA on low-K diets. The results indicate that ROMK channel activity is highly regulated by dietary K in both the CCD and the CNT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apical potassium channels in the rat connecting tubule.

Apical membrane K channels in the rat connecting tubule (CNT) were studied using the patch-clamp technique. Tubules were isolated from the cortical labyrinth of the kidney and split open to provide access to the apical membrane. Cell-attached patches were formed on presumed principal and/or connecting tubule cells. The major channel type observed had a single-channel conductance of 52 pS, high ...

متن کامل

Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium.

ROMK channels are well-known to play a central role in renal K secretion, but the absence of highly specific and avid-ROMK antibodies has presented significant roadblocks toward mapping the extent of expression along the entire distal nephron and determining whether surface density of these channels is regulated in response to physiological stimuli. Here, we prepared new ROMK antibodies verifie...

متن کامل

Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct.

ROMK potassium channels are present in the cortical collecting ducts (CCDs) of the kidney and serve as the exit pathways for K+ secretion in this nephron segment. Dietary K+ restriction reduces the abundance of ROMK in the kidney. We have previously shown that ROMK undergoes endocytosis via clathrin-coated vesicles in Xenopus laevis oocytes and in cultured cells. Here, we examined the effect of...

متن کامل

Localization of the ROMK protein on apical membranes of rat kidney nephron segments.

The ATP-sensitive, inwardly rectifying K+ channel, ROMK, has been suggested to be the low-conductance ATP-sensitive K+ channel identified in apical membranes of mammalian renal thick ascending limb (TAL) and cortical collecting duct (CCD). Mutations in the human ROMK gene (KIR1.2) have been identified in kindreds with neonatal Bartter's syndrome. In the present study, we generated polyclonal an...

متن کامل

Angiotensin II type 2 receptor regulates ROMK-like K⁺ channel activity in the renal cortical collecting duct during high dietary K⁺ adaptation.

The kidney adjusts K⁺ excretion to match intake in part by regulation of the activity of apical K⁺ secretory channels, including renal outer medullary K⁺ (ROMK)-like K⁺ channels, in the cortical collecting duct (CCD). ANG II inhibits ROMK channels via the ANG II type 1 receptor (AT1R) during dietary K⁺ restriction. Because AT1Rs and ANG II type 2 receptors (AT2Rs) generally function in an antag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 296 2  شماره 

صفحات  -

تاریخ انتشار 2009